TI-83/84+ CALCULATOR REGRESSION HELPS

Entering Data/Plotting points:

1: $\underline{Y=}$ button, then go up to PLOT1, select, de-select all other plots in this row (hit enter to select/deselect)

2: STAT—EDIT-- type x-values into L1, y-values into L2 (to clear/delete previous lists: highlight the name L1, etc. then hit CLEAR and enter)

3: After entering data, hit ZOOM, then 9: ZOOMSTAT

Linear Regression:

- 1: from main screen, hit STAT >CALC #4LINREG(ax+b)
- 2: If you see Xlist: L₁, etc., scroll down to Store RegEQ: and type Y₁ here.

Or: if you see LinReg (ax + b), then type the Y₁ after this (so it looks like LINREG(ax + b) Y₁).

This will send the equation directly to Y_1 so that we can look at its graph.

<u>How to get Y₁ displayed:</u> press green <u>ALPHA</u>key, then F4 (over the TRACE key), select Y1 (or for older calcs, hit <u>VARS</u> \rightarrow YVARS \rightarrow 1:FUNCTION \rightarrow 1:Y₁ This will display Y₁ on main screen).

3: When you have entered Y_1 , select Calculate or hit Enter to do the technique. The calculator will return the linear equation and perhaps the correlation coefficient r (for some calc. settings). It will also place the linear regression equation into the Y_1 function for graphing.

4: Hit GRAPH to see how well the line fits the data.

Nonlinear Regression: follow same steps as for Linear, except for when you get to Stat-Calc, choose a *different* type of regression whichever one you are wanting to find (exponential, quadratic, etc.).

Quadratic Regression: Stat-Calc-#5 QuadReg	(Produces $ax^2 + bx + c$)
Cubic Regression: Stat-Calc-#6 CubicReg	(Produces $ax^3 + bx^2 + cx + d$)
Quartic Regression: Stat-Calc-#7QuartReg	(Produces $ax^4 + bx^3 + cx^2 + dx + e$)
Logarithmic Regression: Stat-Calc-#9LnReg	(Produces $a + b \cdot \ln(x)$)
Exponential Regression: Stat-Calc-#0:ExpReg	(Produces a*b^x)