TI-83/84+ CALCULATOR REGRESSION HELPS

Entering Data/Plotting points:

1: $\mathrm{Y}=$ button, then go up to PLOT1, select, de-select all other plots in this row (hit enter to select/deselect)

2: STAT-EDIT-- type x-values into L1, y-values into L2 (to clear/delete previous lists: highlight the name L1, etc. then hit CLEAR and enter)

3: After entering data, hit ZOOM, then 9: ZOOMSTAT

Linear Regression:

1: from main screen, hit STAT——CALC—\#4LINREG(ax+b)
2: If you see Xlist: L_{1}, etc., scroll down to Store RegEQ: and type Y_{1} here.
Or: if you see $\operatorname{LinReg}(\mathbf{a x}+\mathbf{b})$, then type the Y_{1} after this (so it looks like $\left.\operatorname{LINREG}(\mathbf{a x}+\mathbf{b}) \mathbf{Y}_{\mathbf{1}}\right)$.
This will send the equation directly to Y_{1} so that we can look at its graph.

> How to get Y_{1} displayed: press green ALPHAkey, then F4 (over the TRACE key), select Y1 (or for older calcs, hit VARS $->$ YVARS \longrightarrow I:FUNCTION $\longrightarrow 1: Y_{1}$ This will display Y_{1} on main screen).

3: When you have entered Y_{1}, select Calculate or hit Enter to do the technique. The calculator will return the linear equation and perhaps the correlation coefficient r (for some calc. settings). It will also place the linear regression equation into the Y_{1} function for graphing.

4: Hit GRAPH to see how well the line fits the data.

Nonlinear Regression: follow same steps as for Linear, except for when you get to Stat-Calc, choose a different type of regression whichever one you are wanting to find (exponential, quadratic, etc.).

Quadratic Regression: Stat-Calc-\#5 QuadReg (Produces $a x^{2}+b x+c$)
Cubic Regression: Stat-Calc-\#6 CubicReg (Produces $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$)
Quartic Regression: Stat-Calc-\#7QuartReg (Produces $a x^{4}+b x^{3}+\mathrm{cx}^{2}+\mathrm{dx}+\mathrm{e}$)
Logarithmic Regression: Stat-Calc-\#9LnReg (Produces $\mathrm{a}+\mathrm{b} \cdot \ln (\mathrm{x})$)
Exponential Regression: Stat-Calc-\#0:ExpReg (Produces $\mathrm{a}^{*} \mathrm{~b}^{\wedge} \mathrm{x}$)

